Apratim Bhattacharyya

Biography

Portrait of Apratim Bhattacharyya

I am a Staff Machine Learning Researcher at Qualcomm AI Research. My research interests lie in the areas of Neural Reasoning, Embodied Systems and Generative Models. Previously, I was a Postdoc at the University of Tuebingen working in the Autonomous Vision Group. Before that I was a PhD student at the Max Planck Institut für Informatik, Saarbrücken, advised by Dr. Bernt Schiele and Dr. Mario Fritz. I completed my Master’s Thesis at Saarland University under the supervision of Dr. Jilles Vreeken in the area of Algorithmic Data Mining and my Bachelors degree at the National Institute of Technology, Karnataka, India.

News

Publications

  1. Paper Thumbnail
    Apratim Bhattacharyya*, Bicheng Xu*, Sanjay Haresh, Reza Pourreza, Litian Liu, Sunny Panchal, Leonid Sigal, Roland Memisevic Can Multi-Modal LLMs Provide Live Step-by-Step Task Guidance? (*joint first authorship) NeurIPS, 2025 (Coming Soon!)
  2. Paper Thumbnail
    Reza Pourreza, Rishit Dagli, Apratim Bhattacharyya, Sunny Panchal, Guillaume Berger, Roland Memisevic Can Vision-Language Models Answer Face to Face Questions in the Real-World? Paper; Dataset
  3. Paper Thumbnail
    Litian Liu, Reza Pourreza, Sunny Panchal, Apratim Bhattacharyya, Yao Qin, Roland Memisevic Enhancing Hallucination Detection through Noise Injection. Paper
  4. Paper Thumbnail
    Rajeev Yasarla, Shizhong Han, Hsin-Pai Cheng, Litian Liu, Shweta Mahajan, Apratim Bhattacharyya, Yunxiao Shi, Risheek Garrepalli, Hong Cai, Fatih Porikli RoCA: Robust Cross-Domain End-to-End Autonomous Driving. Paper
  5. Paper Thumbnail
    Deepti Hegde, Rajeev Yasarla, Hong Cai, Shizhong Han, Apratim Bhattacharyya, Shweta Mahajan, Litian Liu, Risheek Garrepalli, Vishal M Patel, Fatih Porikli Distilling Multi-modal Large Language Models for Autonomous Driving. CVPR, 2025. Paper
  6. Paper Thumbnail
    Sunny Panchal* , Apratim Bhattacharyya*, Guillaume Berger, Antoine Mercier, Cornelius Böhm, Florian Dietrichkeit, Reza Pourreza, Xuanlin Li, Pulkit Madan, Mingu Lee, Mark Todorovich, Ingo Bax, Roland Memisevic Live Fitness Coaching as a Testbed for Situated Interaction. (*joint first authorship) NeurIPS (D&B Track), 2024. Paper; Data; Code
  7. Paper Thumbnail
    Sanjay Haresh, Daniel Dijkman, Apratim Bhattacharyya, Roland Memisevic ClevrSkills: Compositional Language and Visual Reasoning in Robotics. NeurIPS (D&B Track), 2024. Paper; Data; Code
  8. Paper Thumbnail
    Apratim Bhattacharyya, Sunny Panchal, Mingu Lee, Reza Pourreza, Pulkit Madan, Roland Memisevic Look, Remember and Reason: Grounded Reasoning in Videos with Language Models. ICLR, 2024. Paper
  9. Paper Thumbnail
    Reza Pourreza, Apratim Bhattacharyya, Sunny Panchal, Mingu Lee, Pulkit Madan, Roland Memisevic Painter: Teaching Auto-regressive Language Models to Draw Sketches. ICCV Workshops, 2023. Paper
  10. Paper Thumbnail
    Niklas Hanselmann, Katrin Renz, Kashyap Chitta, Apratim Bhattacharyya, Andreas Geiger KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients. ECCV, 2022 (Oral) Paper; Project Page
  11. Paper Thumbnail
    Apratim Bhattacharyya, Daniel O. Reino, Mario Fritz, Bernt Schiele Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers. CVPR, 2021. Paper; Data;Code
  12. Paper Thumbnail
    Apratim Bhattacharyya, Christoph-Nikolas Straehle, Mario Fritz, Bernt Schiele Haar Wavelet based Block Autoregressive Flows for Trajectories. GCPR, 2020. (Oral) Paper
  13. Paper Thumbnail
    Apratim Bhattacharyya*, Shweta Mahajan* , Mario Fritz, Bernt Schiele, Stefan Roth Normalizing Flows with Multiscale Autoregressive Priors. (*joint first authorship) CVPR, 2020. Paper; Code
  14. Paper Thumbnail
    Ahmed Salem, Apratim Bhattacharyya, Michael Backes, Mario Fritz, Yang Zhang Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning. USENIX Security, 2020. Paper
  15. Paper Thumbnail
    Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz, Bernt Schiele, Christoph-Nikolas Straehle Conditional Flow Variational Autoencoders for Structured Sequence Prediction. ML4AD @ NeurIPS, 2019 (Oral). Paper
  16. Paper Thumbnail
    Apratim Bhattacharyya, Mario Fritz, Bernt Schiele Bayesian Prediction of Future Street Scenes using Synthetic Likelihoods. ICLR, 2019. Paper; Code + Data
  17. Paper Thumbnail
    Apratim Bhattacharyya, Bernt Schiele, Mario Fritz Accurate and Diverse Sampling of Sequences based on a ‘Best of Many’ Sample Objective. CVPR, 2018. (Oral) Paper; Code
  18. Paper Thumbnail
    Apratim Bhattacharyya, Mario Fritz, Bernt Schiele Long-Term On-Board Prediction of People in Traffic Scenes under Uncertainty. CVPR, 2018. Paper; Code + Data
  19. Paper Thumbnail
    Apratim Bhattacharyya, Mateusz Malinowski, Bernt Schiele, Mario Fritz Long Term Image Boundary Prediction. AAAI, 2018. Paper
  20. Paper Thumbnail
    Apratim Bhattacharyya, Jilles Vreeken Efficiently Summarising Event Sequences with Rich Interleaving Patterns. SDM, 2017. Paper